Intravital imaging of mouse urothelium reveals activation of extracellular signal‐regulated kinase by stretch‐induced intravesical release of ATP

نویسندگان

  • Takeshi Sano
  • Takashi Kobayashi
  • Hiromitsu Negoro
  • Atsushi Sengiku
  • Takuya Hiratsuka
  • Yuji Kamioka
  • Louis S. Liou
  • Osamu Ogawa
  • Michiyuki Matsuda
چکیده

To better understand the roles played by signaling molecules in the bladder, we established a protocol of intravital imaging of the bladder of mice expressing a Förster/fluorescence resonance energy transfer (FRET) biosensor for extracellular signal-regulated kinase (ERK), which plays critical roles not only in cell growth but also stress responses. With an upright two-photon excitation microscope and a vacuum-stabilized imaging window, cellular ERK activity was visualized in the whole bladder wall, from adventitia to urothelium. We found that bladder distention caused by elevated intravesical pressure (IVP) activated ERK in the urothelium, but not in the detrusor smooth muscle. When bladder distension was prevented, high IVP failed to activate ERK, suggesting that mechanical stretch, but not the high IVP, caused ERK activation. To delineate its molecular mechanism, the stretch-induced ERK activation was reproduced in an hTERT-immortalized human urothelial cell line (TRT-HU1) in vitro. We found that uniaxial stretch raised the ATP concentration in the culture medium and that inhibition of ATP signaling by apyrase or suramin suppressed the stretch-induced ERK activation in TRT-HU1 cells. In agreement with this in vitro observation, pretreatment with apyrase or suramin suppressed the high IVP-induced urothelial ERK activation in vivo. Thus, we propose that mechanical stretch induces intravesical secretion of ATP and thereby activates ERK in the urothelium. Our method of intravital imaging of the bladder of FRET biosensor-expressing mice should open a pathway for the future association of physiological stimuli with the activities of intracellular signaling networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells

Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...

متن کامل

Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors.

Gliosis is characterized by hypertrophic and hyperplastic responses of astrocytes to brain injury. To determine whether injury of astrocytes produced by an in vitro model of brain trauma activates extracellular signal-regulated protein kinase (ERK), a key regulator of cellular proliferation and differentiation, astrocytes cultured on deformable SILASTIC membranes were subjected to rapid, revers...

متن کامل

Intracellular Ca(2+) regulation and electrophysiolgical properties of bladder urothelium subjected to stretch and exogenous agonists.

Intracellular Ca(2+) control and the electrophysiological properties of guinea-pig urothelium were measured during interventions encountered during bladder filling, including cell stretch and exposure to exogenous transmitters such as ATP and muscarinic agonists. Stretch, achieved by exposure to solutions of altered osmolality, generated intracellular Ca(2+)-transients that were attenuated by G...

متن کامل

The Regulation of Stretch-induced Atp Release from Urothelium by Adenosine

Hypothesis / aims of study ATP release from the urothelium is proposed as a central step in the sensation of bladder fullness, as the nucleotide is released following stretch of the urothelium. Furthermore, ATP release is enhanced in tissue from bladders displaying heightened sensations on filling thus suggesting a pathophysiological basis of this condition. It is known that pathways mediating ...

متن کامل

Store-operated Ca2+ entry suppresses distention-induced ATP release from the urothelium.

Epithelial cells in the urinary bladder (urothelium) trigger sensory signals in micturition by releasing ATP in response to distention of the bladder wall. Our previous study revealed the distinct roles of extracellular Ca(2+) and the Ca(2+) stores in the endoplasmic reticulum (ER) in urothelial ATP release. In the present study, we investigated the regulation of urothelial ATP release by Ca(2+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016